A New Approach to Product Selection with Numerous Practical Constraints

John M. Ennis - The Institute for Perception, Richmond, VA, USA, Joey C. Lu - GlaxoSmithKline CH, Parsippany, NJ, USA, and B. Thomas Carr - Carr Consulting, Wilmette, IL, USA

Goal

Select optimal combination of products for category appraisal

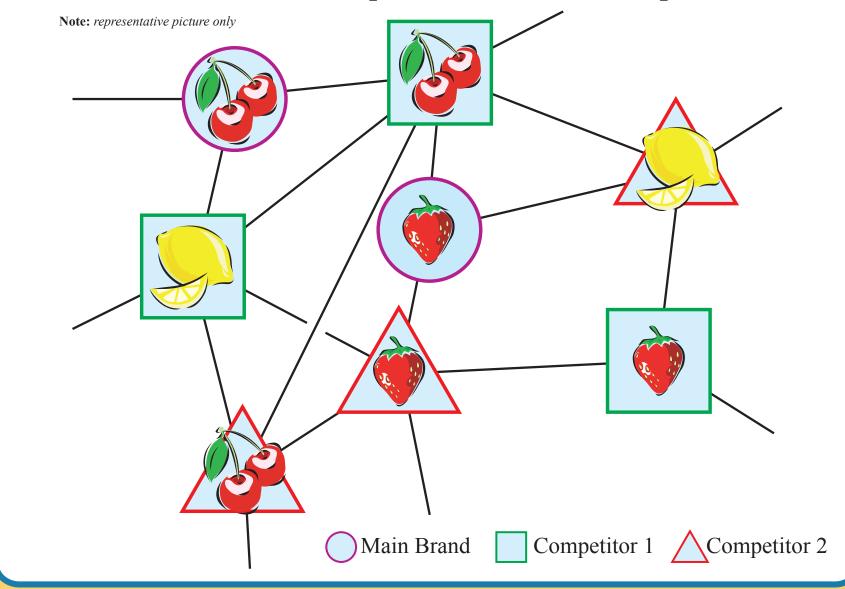
Challenge

24 total products, but resources only permit 16 to be tested

Starting Point: Descriptive Profiling

Product	Sweetness	Bitterness	Sourness	
1	4.07	3.93	3.29	• • •
2	6.78	1.50	3.61	• • •
3	3.49	4.43	3.69	• • •
4	5.84	2.45	3.36	• • •
5	6.33	2.04	3.14	• • •
6	3.08	4.59	3.33	•••
7	3.07	4.70	3.71	• • •
8	3.34	4.44	3.58	•••
9	3.16	4.57	3.05	
•••	•••	•••	•••	

Additional Complications


- ▶ 8 flavors of main brand
- ▶ 8 flavors for each of 2 competitors
- ► Need one competing flavor for each main brand flavor

Landscape Segmentation Analysis

used to convert descriptive data to sensory distances

Product	1	2	3	4	• • •
1	0	7.5	2.2	4.5	• • •
2	7.5	0	8.1	5.2	
3	2.2	8.1	0	4.9	• • •
4	4.5	5.2	4.9	0	• • •
				•••	

- 1. Create network of sensory similarity from distance matrix
- 2. Modify network to reflect constraints
- 3. Search nework for independent sets to select products

New Technique: Graph Theory can be used for product selection with constraints

References

- 1. Cazals, F. and Karande, C. (2008). A note on the problem of reporting maximal cliques. *Theoretical Computer Science*, 407(1-3), 564-568.
- 2. Ennis, J.M., Ennis, D.M., and Fayle, C.M. (2010). Optimum product selection for a drivers of liking project. *IFPress*, 13(1), 2-3.
- 3. Ennis, J.M., Fayle, C.M., and Ennis, D.M., (2009). Reductions of letter displays. IFPress Research Papers, 903, 1-44.
- 4. Ennis, J.M., Loss, C.R., Nestrud, M.A. & Rossi, F. (2011). Combinatorial tools in sensory science and consumer research. 2011 Pangborn Symposium.
- 5. Lawler, E., Lenstra, J.K., and Kan, H.G.R. (1980). Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing, 9, 558-565.
- 6. Rousseau, B., and Ennis, D.M. (2008). Improving the cost and speed of product innovation. IFPress, 11(1), 2-3
- 7. Valiente, G. (2002). Algorithms on Trees and Graphs. NY: Springer.